
Greatly Improved Cache Update Times
for Conditions Data with Frontier/Squid

Dave Dykstra, Lee Lueking
Computing Division, Fermilab, Batavia, IL

Introduction

The CMS detector project loads copies of conditions data to
over a hundred thousand computer cores worldwide by
using a software subsystem called Frontier. This sub-
system translates database queries into http, looks up the
results in a central database at CERN, and caches the
results in an industry-standard http proxy/caching server
called Squid. One of the most challenging aspects of any
cache system is coherency, that is, ensuring that changes
made to the underlying data get propagated out to all
clients in a timely manner. Recently, the Frontier system
was enhanced to drastically reduce the time for changes to
be propagated everywhere without overloading servers.
The propagation time is now as low as 15 minutes for some
kinds of data and no more than 60 minutes for the rest of
the data. This was done by taking advantage of an http and
Squid feature called If-Modified-Since in which the Last-
Modified time-stamp of cached data is sent back to the
central server. The server responds to this with a very
short message if data has not been modified, which is the
case most of the time, and re-validates the cache. In order
to use this feature, the Frontier server has to send the Last-
Modified timestamp, but since modification times are not
normally tracked by Oracle databases a PL/SQL program
was developed to keep track of the modification times of
database tables. We discuss the details of this caching
scheme and the obstacles overcome including Oracle
database bugs and Squid bugs.

ORCOFF

ORCON

Offline
Frontier
Servers

Tomcat+
Squid

Tier0
Squids

Online
Frontier
Servers

Tomcat+
Squid

Wide
Area

Network

CMS Online

Background – Frontier usage in CMS

Tier0
Farm

Tier1, 2, 3
Squids

TierN
Farm

Tier1, 2,3
Squids

CMS Offline

TierN
Farm

In CMS Offline, client jobs on worker node farms at over 50
sites worldwide make http requests to their local Squids to
load conditions data. The Squids in turn load data from the
central Squids at CERN. The central Squids contact the
tomcat on the same server which converts the http requests
to Oracle database requests.

In CMS Online HLT, there is a Squid on every worker node,
arranged in a hierarchy to load nearly 10,000 cores in under a
minute.

The Problem – Cache Coherency

Every caching system must be able to track changes in the
underlying data. Previously, this was managed in Frontier by
separating queries into two types: (1) those that were
expected to change and (2) those that weren't. Those that
were expected to change were set to expire sooner than
those that weren't. In CMS Offline, even the short times were
still quite high, however: most were once per day. The long
times were very high: a year. Setting the times much shorter
would result in much higher delays and stress on the
infrastructure, because the data had to be reloaded all the
way from the database, even if it hadn't changed.

The problem with this previous approach was that there were
often times when data would change in the database even
though it wasn't supposed to. There were many occasions
where caches had to be manually cleared.

In CMS Online, everything was set to be expired very
frequently so there wasn't a coherency problem. However,
all Conditions data had to be reloaded every time the Run
was started. That took less than a minute, but during that
time all collisions at the detector would be lost, so that was
still too long: it was required to be less than 10 seconds.
Fortunately, the new solution (described below) re-validates
expired cached items so unless the data changes, it doesn't
need to be completely reloaded and so is much faster.

The Solution – If-Modified-Since

The http protocol and Squid already had a solution: if a
server supplies a Last-Modified time, and a query comes to
Squid for an object in its cache that has expired, Squid auto-
matically issues an If-Modified-Since request with that time.

An example, first filling the cache:
 Client 1 Squids Tomcat Oracle
Initiate request

 In cache? No

 Look up table
 modification time

 Return modtime

 Save modtime
 Convert request

 Return data

Convert response
 set expiration time
 and Last-Modified

 Save response &
 send to client

Receive response

Some time later, after expiration time:
 Client 2 Squids Tomcat Oracle
Initiate request

 In cache? Yes,
 but expired. Send

 If-Modified-Since

Table modtime saved
 recently? Yes
Has it changed? No
Send NOT MODIFIED
 + new expiration time

 Update expiration time
 Send cached response

Receive response

So the long-distance traffic, and the work that Tomcat and
Oracle have to do, is greatly reduced when the data is not
modified. Instead, the response is a small NOT MODIFIED
message. Tomcat saves the per-table modification times and
re-uses them for up to 5 minutes (typically) so if there are
many queries for the same table close together Oracle
doesn't have to be contacted every time. These things allow
us to greatly reduce the expiration times without overloading
the servers, and so allow changes to be noticed much faster.

Effect on Frontier Infrastructure

The load on the 3 central Frontier servers at CERN did go up
noticeably when we cut over in mid-December 2008 but they
still have plenty of spare capacity. The chart below shows a
plot of the combined number of requests per minute for the 3
central Squids over the last months (averaged per day):

The green area is the requests received from site Squids and
the blue line is the requests passed on to tomcat. Site
Squids often serve 40k+ requests per minute each so a few
thousand requests per minute each is easy.

Getting Modification Times from Oracle DB

The most challenging part of this deployment was that the
Oracle database does not normally track modification times.
However, this capability was added using PL/SQL scripts.
Three different approaches have been taken:

1. Use SQL triggers to track all table modifications and keep
a timestamp in a LAST_MODIFIED_TIMES table in each
account. This works, but DB administrators worried that
the triggers would be too heavy of a load on the database
servers during updates so it was never deployed.

2. Use Oracle's DBMS_CHANGE_NOTIFICATION package to
update timestamps only upon DB COMMITs, and triggers
to track table CREATEs and DROPs. At first there was a
bug limiting the length of account plus table names, but
Oracle fixed that, so this is the approach that was
deployed. However, experience in production has shown
a few more problems:
 Sometimes it stops updating the timestamps.
 The PL/SQL script for this has the inconvenience along

with solution #1 of having to be installed in every
account, and has to be reinstalled after an account's
entire content is copied to another account.

 Sometimes it interferes with streaming data from one
server to another.

3. Use Oracle's DBMS_STATS package to put modification
times into an ALL_TAB_MODIFICATIONS view, and copy
the timestamps from there to a single table for the
database. This method is being tested as of this writing
in late February 2009. It requires periodically flushing
the statistics, so a disadvantage is that it adds an
additional 5 minute delay for changes to be noticed. The
big advantage is that only has to be set up once per
database.

Squid bugs

We also encountered two Squid bugs that affected this
deployment, that were fixed in a very timely manner:

1. The oldest open bug in the Squid bug tracking system,
bug #7 from August 2000, reported that http headers
were not re-written in the cache when they are updated.
It is necessary to update the cached Date header for this
deployment when one Squid feeds another. Very
fortunately for us, the latest stable Squid release 2.7 had
finally fixed this 1.5 months before we ran into it.

2. During testing, we found a case where the Date header
was still not updated. This was Squid bug #2430 and
was fixed in October 2008 in Squid release 2.7STABLE5.

Heirarchy of squids on every
 worker node in HLT Farm

Work supported by the U.S. Department of Energy under contract No. DE-AC02-07CH11359

